Partial zeta values, Gross’s tower of fields conjecture, and Gross–Stark units

نویسندگان

  • Samit Dasgupta
  • Michael Spieß
چکیده

We prove a conjecture of Gross regarding the “order of vanishing” of Stickelberger elements relative to an abelian tower of fields and give a cohomological construction of the conjectural Gross–Stark units. This is achieved by introducing an integral version of the Eisenstein cocycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Eisenstein cocycle, partial zeta values and Gross–Stark units

We introduce an integral version of the Eisenstein cocycle. As applications we prove a conjecture of Gross regarding the “order of vanishing” of Stickelberger elements relative to an abelian tower of fields and give a cohomological construction of the conjectural Gross–Stark units.

متن کامل

Gross–stark Units, Stark–heegner Points, and Class Fields of Real Quadratic Fields

Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields by Samit Dasgupta Doctor of Philosophy in Mathematics University of California, Berkeley Professor Kenneth Ribet, Chair We present two generalizations of Darmon’s construction of Stark–Heegner points on elliptic curves defined overQ. First, we provide a lifting of Stark–Heegner points from elliptic curves to cert...

متن کامل

A Shintani-type Formula for Gross–stark Units over Function Fields

Let F be a totally real number field of degree n, and let H be a finite abelian extension of F . Let p denote a prime ideal of F that splits completely in H. Following Brumer and Stark, Tate conjectured the existence of a p-unit u in H whose p-adic absolute values are related in a precise way to the partial zeta-functions of the extension H/F . Gross later refined this conjecture by proposing a...

متن کامل

Shintani zeta-functions and Gross–Stark units for totally real fields

Let F be a totally real number field and let p be a finite prime of F , such that p splits completely in the finite abelian extension H of F . Stark has proposed a conjecture stating the existence of a p-unit in H with absolute values at the places above p specified in terms of the values at zero of the partial zeta-functions associated to H/F . Gross proposed a refinement of Stark’s conjecture...

متن کامل

Elliptic units for real quadratic fields

1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015